



# Top Quark Mass Measurement in ttbar All Hadronic channel at CDF

**Gheorghe Lungu** 



### **Outline**



- 1. Top Quark Physics
  - 1. Motivation
  - 2. Top Quark Production and Decay
  - 3. All Hadronic channel
- 2. Tevatron & CDF detector overview
- 3. Full Description of the Top Mass Analysis
  - 1. Data sample
  - 2. Event selection
  - 3. Matrix Element technique
  - 4. Modeling of background
  - 5. Mass Measurement
- 4. Conclusion



# Top Quark Physics



- •What is "top quark"?
  - •3rd generation particle in Standard Model
  - •Electric charge=2/3, Spin=1/2
  - •Heaviest particle -> decays before hadronization (lifetime~4x10<sup>-25</sup>s)
  - Passes momentum and spin information to its decay products
- Motivation to study top
  - •Measuring its properties (mass, charge, spin, lifetime, etc) constrains theories aimed at fixing problems in Standard Model
  - Might have a special role in the dynamics of EWSB (Yukawa coupling ~1)
  - •Knowing the mass of top quark constrains the mass of Higgs boson





# **Producing Top Quarks**



- •Main Mechanisms:
  - Pair production
    - Quark-antiquark annihilation
    - •Gluon-gluon fusion
  - Single top







- Experiments location
  - Tevatron
    - Ppbar collider designed for top quark discovery
    - •1.96TeV in center-of-mass ⇒ 15% gg fusion, 85% qqbar
  - •LHC
    - pp collider
    - •14TeV in center-of-mass ⇒ 90% gg fusion, 10% qqbar



# Expected signature for ttbar pairs



- Standard Model top quark decay
  - •99% of the time t -> W + b
  - •W boson decays into:
    - Lepton pairs
      - •e+ $\nu_{e}$ ,  $\mu$ + $\nu_{\mu}$ , or  $\tau$ + $\nu_{\tau}$
    - Quark pairs
      - •(ud or cs) x 3 colors
- •SM ttbar decay channels
  - •Tau+X(lepton or quark)

17/81~21%

•Dilepton: 4/81~5%

•Lepton+Jets: 24/81~30%

•All Hadronic: 36/81~44%



#### ttbar Decay Modes







### Top Quark in All Hadronic Channel



#### Features

- Largest branching fraction
- •Fully reconstructed final state
- Large QCD multijet background
- Large combinatorial background (ambiguity in quark-jet pairing)
- Jet energy scale has big effect

#### Motivation

- Testing of the Standard Model
- Consistency check among the ttbar decay channels
- •Improve uncertainties by using
  - New tools
  - New event selection

#### Measurements in this channel

- Cross-section measurement
  - •Most recent: 8.3±2.3<sub>1.9</sub> pb
- Mass measurements
  - Only 3 other results
  - •Best: 174.5±5.3 GeV
- •Resonance search (in progress)







### **Tevatron**



- Superconducting Proton and Anti-proton synchrotron
  - 1. Each beam has 3x12 bunches with 396ns bunch separation
  - 2. Superconducting magnets bend particles for a 21 µs revolution time around the 1km radius ring
  - 3. 8RF cavities accelerate particles to 980GeV (The most energetic accelerator collecting data to date)
  - 4. The beams collide at CDF & D0
- Instantaneous luminosity is of order 10<sup>31</sup>-10<sup>32</sup> cm<sup>-2</sup>s<sup>-1</sup>
  - record is 2.9x10<sup>32</sup> cm<sup>-2</sup>s<sup>-1</sup>
- Integrated luminosity delivered:
  - present: ~3.2fb<sup>-1</sup> (goal ~ 8fb<sup>-1</sup>)





# Collider Detector at Fermilab



- •Multi-purpose detector with subsystems placed around beam pipe
- Silicon detector
  - •30-60µm resolution for impact parameter of tracks
- COT-Central Outer Tracker
  - Open-cell wire drift chamber
  - •Hit position resolution~140μm
  - •Momentum resolution~0.0015 GeV-1
- •<u>Time-of-Flight detector</u>
  - Separates kaons and pions (~100ps)
- Calorimeters
  - Segmented sampling sandwich of metal & scintillators
  - •EM (Pb) (13.5%/sqrt(E<sub>T</sub>)⊕2%)
  - Hadronic (Fe) (75%/sqrt(E<sub>T</sub>)⊕3%)
- Muon system
  - •4 drift chambers
- Trigger and Data acquisition
  - •Three trigger levels -> ~100Hz
- •1 pair of top-antitop every 10<sup>10</sup> collisions



- Luminosity detector-CLC
  - •96 Cherenkov counters filled with isobutane
  - •3.7 <  $|\eta|$  <4.7
  - •Determines luminosity by counting the average number of inelastic ppbar interactions
    - •L= $\mu$ ·f<sub>bc</sub>/ $\sigma$ <sub>inel</sub>
  - •I was part of the group monitoring and maintaining CLC



# **Determining Jet Energies**



#### •Jet

•collection of particles generated by the hadronization of a parton followed by the fragmentation/decay of the hadron(s).

#### Jet Energy

- deposited in the calorimeter
- understood as the sum of energies of all particles
- needs to be corrected due to various effects





# **Correcting Jet Energies**



#### • Jet Energy Corrections

- Relative scale
  - •Scales the forward regions to the central part
  - •Di-jet & photon-jet balance
- Absolute scale
  - •Non-linearities & energy loss from un-instrumented regions
  - Use Monte Carlo simulation
- Multiple interactions
  - •Subtract the energies of particles coming from different interaction
  - •Uses minimum bias data
- Underlying event
  - •Subtract the energies of spectator particles
  - •Uses minimum bias data
- Out-of-cone
  - Adds energy not clustered by the jet algorithm
  - •Use Monte Carlo simulation
- Interesting to check this scaling in ttbar events







### Heavy Flavor Jet ID



- •Identification of such jets reduces backgrounds for top quark signal
- Secondary vertex algorithms
  - SecVtx and JetProbability
  - •Lifetime ~10ps means travel distance ~3mm
  - •Silicon detector resolution allows for such measurements
  - •For JP, I have studied how the ID rates depend on various parameters
- Soft lepton finder algorithms
  - •Identifies a soft electron/muon within the cone of a reconstructed jet





- $b \rightarrow \ell \nu c \text{ (BR} \sim 20\%)$
- $b \rightarrow c \rightarrow \ell \nu s \text{ (BR} \sim 20\%)$



# Data sample



#### Data sample

•943 pb<sup>-1</sup> of multijet events [ use a trigger 88% efficient for ttbar all hadronic events]



#### Sample composition

- Signal- ttbar all hadronic
  - •has 6 quarks in the final state which will hadronize into 6 jets of particles [xs~3pb].
  - •very energetic, central and spherical
  - Two of the quarks are bquarks -> heavy flavor jets
- •Background:
  - QCD multijets
    - •Bb+4 partons [xs~48nb]
    - •6 partons [xs~830nb]
  - Hadronic W/Z+jets [xs~2.8nb]
  - Single top+radiation [xs~2pb]
  - Hadronic W/Z pairs+radiation[xs~5pb]



# Preliminary Event Selection



#### •Clean-up cuts -> S/B ~ 1/1300

- •Trigger emulation: Level2 SumEt>175GeV
- •Vertex: |z|<60cm & |z-z<sub>p</sub>|<5cm
- •Missing Et Significance: < 3 (GeV)<sup>1/2</sup>
- Tight lepton veto

#### •Kinematical cuts -> S/B ~ 1/23

- •Njets = 6 jets with |eta|<2 & Et>15GeV
- •Aplanarity+0.005SumEt<sub>3</sub> > 0.96
- •Centrality > 0.78
- •SumEt > 280GeV

#### •<u>B-tagging</u> -> S/B ~ 1/6

- •Require at least 1 heavy flavor jet
- Use SVX tagger





# **Analysis Flow Chart**







### **Background Model**



#### •. Method

- Parameterize the heavy flavor jet rates from a background dominated sample
- Extrapolate the rates above to the signal region
- •Check shapes with Alpgen background Monte Carlo
- Normalization is determined by subtracting the signal expectation from the data
- •For 943pb-1 of data, the background estimate is
  - 35 single tagged
  - 10 double tagged





# Matrix Element Technique



- •Define the probability that a multijet event is produced via *ttbar* all hadronic mechanism at a given top mass.
- •Ratio of the elementary cross-section for an 6-jet event defined by {j} to the total cross-section

$$dP(M_{top}) = \frac{d\sigma(j \mid M_{top})}{\sigma(M_{top})}$$

- More realistically:
  - Jet energies are not the true energies of the quarks
  - Need transfer functions to describe parton-to-jet transition
    - •Help by enhancing the ttbar-likeness of the parton configuration using Pt of ttbar system as weight.
  - Ambiguity in parton-jet assignment -> combinations
  - •Event selection means only a fraction  $\varepsilon(M)$  of total cross-section is used.

Event probability density expression: 
$$P(M_{top}) = \frac{\sum\limits_{combi} \int d\sigma(p \mid j, M_{top}) \cdot TF(p \mid j) \cdot P_T(p)}{\sigma(M_{top})\varepsilon(M_{top})N_{combi}}$$



# **Probability Density Normalization**



Event probability density expression:  $P(M_{top}) = \frac{\sum\limits_{combi} \int d\sigma(p \mid j, M_{top}) \cdot TF(p \mid j) \cdot P_T(p)}{\sigma(M_{top})\varepsilon(M_{top})N_{combi}}$ 

#### Fraction of ttbar events passing kinem. cuts



#### **Total cross-section for ttbar events**



#### Number of combinations

- •120 for single b-tagged events
- •24 for double tagged events



### **Transfer Functions**



Event probability density expression:  $P(M_{top}) = \frac{\sum\limits_{combi} \int d\sigma(p \mid j, M_{top}) \cdot TF(p \mid j) \cdot P_T(p)}{\sigma(M_{top}) \varepsilon(M_{top}) N_{combi}}$ 

- •TF(p|j) is a probability that a parton of energy "p" has associated a jet of energy "j".
  - •B-jets & W-jets have different energy spectrum, and they are treated separately.
  - •Sum of 2 gaussians used to fit the shape, normalized to 1.
  - •Fit depends on the transverse momentum & pseudo-rapidity of partons
  - •In the plot x-axis is "1-j/p"
- •The distribution are built from Monte Carlo events where the jets were matched exclusively with partons.





### Transverse Momentum of ttbar



Event probability density expression:  $P(M_{top}) = \frac{\sum\limits_{combi} \int d\sigma(p \mid j, M_{top}) \cdot TF(p \mid j) \cdot P_T(p)}{\sigma(M_{top}) \varepsilon(M_{top}) N_{combi}}$ 

- •P<sub>⊤</sub>(p) is a weight following the shape of the transverse momentum of the ttbar final state
  - •Used the 6 quarks in the final state
  - Sum of 3 gaussians used to fit the shape, then normalize to 1.
- The distribution is built from Monte Carlo ttbar events.





### **Matrix Element Calculation**



Event probability density expression: 
$$P(M_{top}) = \frac{\sum\limits_{combi} \int d\sigma(p \mid j, M_{top}) \cdot TF(p \mid j) \cdot P_T(p)}{\sigma(M_{top})\varepsilon(M_{top})N_{combi}}$$

$$|d\sigma(p \mid j, M_{top}) = \int \frac{dz_a dz_b f(z_a) f(z_b)}{4E_a E_b |v_a - v_b|} |M(p \mid j, M_{top})|^2 \prod_{i=1}^{6} \frac{d^3 \vec{p}_i}{(2\pi)^3 2E_i} (2\pi)^4 \delta^{(4)} (E_{fin} - E_{ini})$$

•F(z<sub>a,b</sub>) is CTEQ5L proton PDF (parton distribution function) with scale 175GeV.

•Jets angles are assumed those of the partons.

- •Matrix element squared is based on the tree level diagram uubar -> ttbar -> all hadronic decay.
  - •Monte Carlo events with ddbar or gluon-gluon interaction are not biased by this choice.
- •Massless quarks hypothesis simplifies calculation.





# **Details of Integration**



Event probability density expression: 
$$P(M_{top}) = \frac{\sum\limits_{combi} \int d\sigma(p \mid j, M_{top}) \cdot TF(p \mid j) \cdot P_T(p)}{\sigma(M_{top}) \varepsilon(M_{top}) N_{combi}}$$

- Advantageous change of variables
  - •b-quark momenta to x,y-components of the ttbar system momentum
    - •Natural variables for the Pt of ttbar weight.
- •Use narrow width approximation for W bosons propagators.
  - p,q momenta of W-decay quarks
  - • $\omega$  a function of p,q-angles  $\Omega$ =( $\phi$ , $\theta$ )

$$P_{W} \xrightarrow{\Gamma_{W} << M_{W}} \xrightarrow{\pi} \frac{\pi}{M_{W} \Gamma_{W}} \cdot \frac{\delta(p - p^{0})}{2q \omega_{qp}(\Omega_{p}, \Omega_{q})}$$

$$p^0 = \frac{M_W^2}{2q\omega_{qp}}$$

- •4 integrals left over momenta
  - Uniform grid of points 2 GeV away from each other in each dimension

- Integration takes about 1hour/event.
- Use computing farm



### **Tests of Matrix Element Calculation**



•Define a sample likelihood as product of event probability densities.

$$L(M_{top}) = \prod_{events} P(M_{top})$$

- •Minimize the negative log of the sample likelihood in various scenarios.
- •Although there is a slight bias, the results are satisfactory.





170

160

160

150

150

V = X

190

180

y = p0 + (x - 178)\*p1

Input Top Mass [GeV]

200



### **Final Event Selection**



#### •<u>Clean-up cuts</u> -> S/B ~ 1/1300

- •Trigger emulation: Level2 SumEt>175GeV
- •Vertex: |z|<60cm &  $|z-z_p|$ <5cm
- •Missing Et Significance: < 3 (GeV)<sup>1/2</sup>
- Tight lepton veto

#### •Kinematical cuts -> S/B ~ 1/23

- •Njets = 6 jets with |eta|<2 & Et>15GeV
- •Aplanarity+0.005SumEt<sub>3</sub> > 0.96
- •Centrality > 0.78
- •SumEt > 280GeV

#### •<u>B-tagging</u> -> S/B ~ 1/6

- •Require at least 1 heavy flavor jet
- Use SVX tagger



#### •ME probability cut -> S/B ~ 1/1

- •min(-lnP) < 10
- •P is the probability density calculated via matrix element



### Preview of Mass Reconstruction



#### Employ a template technique

- 1st set of templates
  - •Parameterized distributions <u>sensitive to variations in top quark</u> <u>mass</u>
- Define a variable, JES, related to jet energy scale.
  - •JES=change in jet energy quantified in units of uncertainty on the jet energy,  $\sigma_{c}$ .
- •2nd set of templates
  - Parameterized distributions sensitive to variations in JES
- Build a likelihood function using the two sets of templates
- •Minimize the likelihood function with respect to top mass & JES simultaneously.
  - •Measuring JES is equivalent to an <u>in situ calibration of the jet energy</u> <u>scale</u>



# **Event Top Mass Templates**



- •The value of the mass  $M_0$  for which -In[P(M)] is minimized will be used to build top mass templates
  - •M<sub>0</sub> can be interpreted as the top mass as the event.
- •These shapes are sensitive to changes in the value of top mass
  - •ttbar shapes are fitted to Breit-Wigner times exponential.
    - •The fit parameters depend linearly on true top mass & JES
  - •Background shapes are fitted to a gaussian.
    - •No mass or JES dependence.







# **Dijet Mass Templates**



- •The invariant mass of pairs  $M_{jj}$  of light flavor jets (untagged) used to build dijet mass templates
  - •M<sub>jj</sub> can be interpreted as the W-boson mass as the event.
- •These templates are sensitive to changes in JES
  - •ttbar shapes are fitted to sum of two gausssians and gamma.
    - •The fit parameters depend linearly on true top mass & JES
  - •Background shapes are fitted to same function as for ttbar
    - •No mass or JES dependence.







### Bi-dimensional Likelihood



- •Build a likelihood which depends on  $M_{top}$ , JES and number of events.
  - •Factorized for samples with different number of b-tagged jets.
  - •Value of JES is constrained to a priori determination.
- •The dependence on  $M_{top}$  and JES comes for terms sensitive to variations in these values
  - •These terms are built with the help of the templates -> P<sup>top</sup> & P<sup>W</sup>

$$L(M_{top}, JES, n) = L_{1tag} \times L_{2tag} \times L_{JES}$$

$$L_{JES} = Gaus(JES \mid 0,1)$$

$$L_{n-tag} = L_{shape}^{top} \times L_{shape}^{W} \times L_{evt} \times L_{sig}$$

$$L_{shape}^{top} = \prod_{evt=1, N_{tot}^{obs}} \frac{n_s \cdot P_s^{top} \left( m_{evt}^{top} \mid M_{top}, JES \right) + n_b \cdot P_b^{top} \left( m_{evt}^{top} \right)}{n_s + n_b}$$

$$L_{shape}^{W} = \prod_{evt = (1, N_{tot}^{obs}) \times Ncombi} \frac{n_s \cdot P_s^W \left( m_{evt}^W \mid M_{top}, JES \right) + n_b \cdot P_b^W \left( m_{evt}^W \right)}{n_s + n_b}$$

- •<u>The total number of events is</u> <u>constrained to the observed value</u> <u>N<sub>tot</sub> obs.</u>
- •<u>The number of ttbar events is</u> <u>constrained to the expectation N<sub>s</sub> exp</u> <u>based on theoretical ttbar x-section</u> <u>of 6.7pb</u>

$$L_{evt} = Pois(n_s + n_b | N_{tot}^{obs}) \quad L_{sig} = Gaus(n_s | N_s^{exp}, \sigma_s^{exp})$$

| Events                                                | 1Tag | 2Tags |
|-------------------------------------------------------|------|-------|
| Nobs                                                  | 48   | 24    |
| $N_s^{exp}(\sigma_{tt}=6.7pb)$                        | 13   | 14    |
| $(\sigma_s)^{\text{exp}} = \sqrt{(N_s^{\text{exp}})}$ | 3.6  | 3.7   |



### Top Mass & JES Reconstruction



- Minimizing the 2D likelihood for Monte Carlo samples
  - •The mass and JES reconstruction shows a bias.
- •Find the top mass & JES dependence of the bias
- •Calibrate the reconstruction to eliminate the bias.
  - Assign a systematic uncertainty

$$M_{out} = (a_1 + a_2 \cdot JES_{true}) + (a_3 + a_4 \cdot JES_{true}) \cdot (M_{true} - 175)$$

$$JES_{out} = (b_1 + b_2 \cdot M_{true}) + (b_3 + b_4 \cdot M_{true}) \cdot JES_{true}$$

| Label | Value        |  |
|-------|--------------|--|
| a1    | 175(0.1)     |  |
| a2    | -0.09(0.05)  |  |
| a3    | 0.975(0.008) |  |
| a4    | 0.016(0.004) |  |

| Label | Value                      |  |
|-------|----------------------------|--|
| b1    | 0.6(0.3)                   |  |
| b2    | -0.003(0.002)              |  |
| b3    | 1.35(0.15)                 |  |
| b4    | -2.1(0.8)x10 <sup>-3</sup> |  |







### Pull Means & Widths







- •Left: Pull Mean Vs JES shows no bias
- •Right: *Pull Width Vs JES* indicates need for correction factor on statistical uncertainty of 1.13



# **Expected Sensitivity**







- Left: Expected statistical+JES uncertainty on top mass
- Right: Expected statistical uncertainty on JES
  - •10% improvement with respect to the *a priori* determination



# Systematic Uncertainties



- •"ISR/FSR"- uncertainty due to the modeling of the initial/final state radiation in the Monte Carlo.
- "Fragmentation" uncertainty due to different fragmentation models in Monte Carlo (Pythia vs Herwig)
- •"Residual JES"- uncertainty due to the composite nature of the JES parameter (various effects form JES correction)

| Source                | Value(GeV/c²) |
|-----------------------|---------------|
| ISR                   | 0.3           |
| FSR                   | 1.2           |
| PDF                   | 0.5           |
| Fragmentation         | 1.0           |
| Method Calibration    | 0.2           |
| Background Shape      | 0.9           |
| Background Statistics | 0.4           |
| Sample Composition    | 0.1           |
| B-JES                 | 0.4           |
| Residual JES          | 0.7           |
| Total                 | 2.1           |



### **Final Measurement**



#### CDF Runll preliminary L=943pb<sup>-1</sup>



# CDF Runll preliminary L=943pb<sup>-1</sup>



Mass = 171.1  $\pm$  3.7 (stat.+JES) GeV/c<sup>2</sup> JES = 0.5  $\pm$  0.9  $\sigma$ 

| Number of<br>Events | 1tag     | 2tag     |
|---------------------|----------|----------|
| Signal              | 13.2±3.7 | 14.1±3.4 |
| Background          | 34.6±7.2 | 9.2±4.3  |



# Consistency of the Statistical Error



#### Using ttbar Monte Carlo

- •form pseudo-experiments with the size determined by the data fit
- •41% of the PEs have lower uncertainty on top mass.

#### CDF Runll preliminary L=943pb<sup>-1</sup>





### Conclusion



- $M = 171.1 \pm 2.8 \text{ (stat.)} \pm 2.4 \text{ (JES)} \pm 2.1 \text{ (syst.)} \text{ GeV/c}^2$
- •This is the <u>most precise</u> measurement of the top mass in this channel

-Weighs 11% in the current world average

- •<u>First time simultaneous</u>
  <u>reconstruction</u> in the all hadronic
  channel of the top mass and JES
- •Original interplay between matrix element technique and template method
- •<u>First time use of matrix element</u> <u>technique in event selection</u>
- The JES value is consistent with other analyses at CDF

 $\cdot JES = 0.5 \pm 0.9 \ \sigma$ 



